Beam-powered propulsion Articles on aviation - Aerospace Engineering
airports worldwide
Other aviation articles
Airport photos
Aircraft photos
Spacecraft photos
Earth from airplane
Earth from space
Airports worldwide
Advertise for free!
Beam-powered propulsion

By Wikipedia,
the free encyclopedia,

Beam-powered propulsion is a class of spacecraft propulsion mechanisms that use energy beamed to the spacecraft from a remote power plant. Most designs are rocket engines where the energy is provided by the beam, and is used to superheat propellant that then provides propulsion, although some obtain propulsion directly from light pressure acting on a light sail structure, and at low altitude heating air gives extra thrust.

Thermal propulsion

With beamed propulsion one can leave the power-source stationary on the ground, and directly (or via a heat exchanger) heat propellant on the spacecraft with a maser or a laser beam from a fixed installation. This permits the spacecraft to leave its power-source at home, saving significant amounts of mass, greatly improving performance.

Since a laser can heat propellant to extremely high temperatures, this potentially greatly improves the efficiency of a rocket, as exhaust velocity is proportional to the square root of the temperature. Normal chemical rockets have an exhaust speed limited by the fixed amount of energy in the propellants, but beamed propulsion systems have no particular theoretical limit (although in practice there are temperature limits).

Ablative Laser Propulsion is a form of laser propulsion that uses a laser to create a plasma plume from a metal propellant, thus producing thrust.

In addition, microwaves can be used to heat a suitable heat exchanger, which in turn heats a propellant (very typically hydrogen). This can give a combination of high specific impulse (700-900 seconds) as well as good thrust/weight ratio (50-150). .

A variation, developed by brothers James Benford and Gregory Benford, is to use thermal desorption of propellant trapped in the material of a very large microwave-sail. This produces a very high acceleration compared to microwave pushed sails alone.

Electric propulsion

Some proposed spacecraft propulsion mechanisms use power in the form of electricity. Usually these schemes assume either solar panels, or an on-board reactor. However, both power sources are heavy.

Beamed propulsion in the form of laser can be used to send power to a photovoltaic panel, for Laser electric propulsion. In this system, careful design of the panels is necessary as the extra power tends to cause a fall-off of the conversion efficiency due to heating effects.

A microwave beam could be used to send power to a rectenna, for microwave electric propulsion. Microwave broadcast power has been practically demonstrated several times (e.g. Goldstone, California in 1974), rectennas are potentially lightweight and can handle high power at high conversion efficiency. However, rectennas tend to need to be very large for a significant amount of power to be captured.

Direct Impulse

A beam could also be used to provide impulse by directly "pushing" on the sail.

One example of this would be using a solar sail to reflect a laser beam. This concept, called a laser-pushed lightsail, was analyzed by physicist Robert L. Forward in 1989as a method of Interstellar travel that would avoid extremely high mass ratios by not carrying fuel. His work elaborated on a proposal initially made by Marx. Further analysis of the concept was done by Landis, Mallove and Matloff, Andrews and others.

In a later paper, Forward proposed pushing a sail with a microwave beam . This has the advantage that the sail need not be a continuous surface. Forward tagged his proposal for an ultralight sail "Starwisp". A later analysis by Landissuggested that the Starwisp concept as originally proposed by Forward would not work, but variations on the proposal continue to be proposed.

The beam has to have a large diameter so that only a small portion of the beam misses the sail due to diffraction and the laser or microwave antenna has to have a good pointing stability so that the craft can tilt its sails fast enough to follow the center of the beam. This gets more important when going from interplanetary travel to interstellar travel, and when going from a fly-by mission, to a landing mission, to a return mission. The laser or the microwave sender would probably be a large phased array of small devices, which get their energy directly from solar radiation. The size of the array obsoletes any lens or mirror.

Another beam-pushed concept would be to use a magnetic sail or MMPP sail to divert a beam of charged particles from a particle accelerator or plasma jet. Jordin Kare has proposed a variant to this whereby a "beam" of small laser accelerated light sails would transfer momentum to a magsail vehicle.


Early in the morning of 2 October 2000 at the High Energy Laser Systems Test Facility (HELSTF), Lightcraft Technologies, Inc. (LTI) with the help of Franklin B. Mead of the U.S. Air Force Research Laboratory and Leik Myrabo set a new world's altitude record of 233 feet (71 m) for its 4.8 inch (12.2 cm) diameter, 1.8 ounce, laser-boosted rocket in a flight lasting 12.7 seconds. Although much of the 8:35 am flight was spent hovering at 230+ feet, the Lightcraft earned a world record for the longest ever laser-powered free flight and the greatest "air time" (i.e., launch-to-landing/recovery) from a light-propelled object. This is comparable to Robert Goddard's first test flight of his rocket design. Increasing the laser power to 100 kilowatts will enable flights up to a 30-kilometer altitude. Their goal is to accelerate a one-kilogram microsatellite into low Earth orbit using a custom-built, one megawatt ground-based laser. Such a system would use just about 20 dollars' worth of electricity, placing launch costs per kilogram to many times less than current launch costs (which are measured in thousands of dollars).

Myrabo's "lightcraft" design is a reflective funnel-shaped craft that channels heat from the laser, towards the center, using a reflective parabolic surface causing the laser to literally explode the air underneath it, generating lift. Reflective surfaces in the craft focus the beam into a ring, where it heats air to a temperature nearly five times hotter than the surface of the sun, causing the air to expand explosively for thrust.

Non-spacecraft applications

In 1964 William C. Brown demonstrated a miniature helicopter equipped with a combination antenna and rectifier device called a rectenna. The rectenna converted microwave power into electricity, allowing the helicopter to fly.

In 2002 a Japanese group propelled a tiny aluminium airplane by using a laser to vaporize a water droplet clinging to it, and in 2003 NASA researchers flew an 11 ounce (312 g) model airplane with a propeller powered with solar panels illuminated by a laser. It is possible that such beam-powered propulsion could be useful for long-duration high altitude unmanned aircraft or balloons, perhaps designed to serve as communication relays or surveillance platforms.

A "laser broom" has been proposed to sweep space debris from Earth orbit. This is another proposed use of beam-powered propulsion, used on objects that were not designed to be propelled by it, for example small pieces of scrap knocked off ("spalled") satellites. The technique works since the laser power ablates one side of the object, giving an impulse that changes the eccentricity of the objects orbit. The orbit would then intersect the atmosphere and burn up.


Text from Wikipedia is available under the Creative Commons Attribution/Share-Alike License; additional terms may apply.

Published in July 2009.

Click here to read more articles related to aviation and space!

christianity portal
directory of hotels worldwide

Copyright 2004-2024 © by, Vyshenskoho st. 36, Lviv 79010, Ukraine
Legal Disclaimer